1. 광고배너
  2. 광고배너
/ 이전버튼 다음버튼
2
미리보기

자산운용을 위한 금융 머신러닝(금융 퀀트 머신러닝)
저자 : 마르코스로페즈데프라도 ㅣ 출판사 : 에이콘출판 ㅣ 역자 : 이기홍

2021.01.26 ㅣ 208p ㅣ ISBN-13 : 9791161754918

정가20,000
판매가19,000(5% 할인)
적립금 800원 (4%)
배송일정 05월 29일 출고 가능
주문 수량 변경시 안내 배송안내
쿠폰 및 결제혜택 확인하기

크기 규격 외(225mm X 152mm, 신국판)
제품구성 단행본
이용약관 청약철회
국내도서 > 컴퓨터 > 시스템공학 > 아키텍처/시스템프로...
로페즈 데 프라도 박사의 저서 『실전 금융 머신러닝 완벽 분석』의 후속작으로, 개념적으로는 자산운용 일반에도 적용할 수 있으며, 퀀트 매니저와 퀀트 분석가에게 지침이 될 수 있는 책이다. 머신러닝의 금융 응용에 대한 아이디어를 제시하며, 『실전 금융 머신러닝 완벽 분석』을 이해하기 위한 기초 개념을 더 자세히 설명하고 관련된 최근의 연구를 추가했다.


펼쳐보기

[목 차]

1.1 동기 부여
1.2 이론이 중요하다
1.2.1 교훈1: 이론이 필요하다
1.2.2 교훈2: 머신러닝은 이론을 발견하는 것을 돕는다
1.3 어떻게 과학자들이 머신러닝을 이용하는가
1.4 두 가지 형태의 과적합
1.4.1 훈련셋 과적합
1.4.2 테스트셋 과적합
1.5 개요
1.6 청중
1.7 다섯 가지 만연한 금융 머신러닝에 대한 잘못된 개념
1.7.1 머신러닝은 성배 대 머신러닝은 무용지물
1.7.2 머신러닝은 블랙박스
1.7.3 금융은 머신러닝을 적용하기에는 불충분한 데이터를 갖고 있다
1.7.4 금융에서 신호 대 잡음 비율이 너무 낮다
1.7.5 금융에서 과적합의 위험은 너무 크다
1.8 금융 리서치의 미래
1.9 자주 물어 보는 질문들
1.10 결론
1.11 연습문제

2장. 잡음 제거와 주음 제거

2.1 동기 부여
2.2 마르첸코-파스퇴르 정리
2.3 신호가 있는 랜덤 행렬
2.4 마르첸코-파스퇴르 PDF 적합화
2.5 잡음 제거
2.5.1 상수 잔차 고유값 방법
2.5.2 타깃 축소
2.6 주음 제거
2.7 실험 결과
2.7.1 최소 분산 포트폴리오
2.7.2 최대 샤프 비율 포트폴리오
2.8 결론
2.9 연습문제

3장. 거리 척도

3.1 동기 부여
3.2 상관계수 기반 척도
3.3 한계와 결합 엔트로피
3.4 조건부 엔트로피
3.5 쿨백 - 라이블러 발산
3.6 교차 엔트로피
3.7 상호 정보
3.8 정보 변분
3.9 이산화
3.10 두 분할 간의 거리
3.11 실험 결과
3.11.1 무관계
3.11.2 선형관계
3.11.3 비선형관계
3.12 결론
3.13 연습문제

4장. 최적 군집화

4.1 동기 부여
4.2 근접성 행렬
4.3 군집화 종류
4.4 군집의 수
4.4.1 관측 행렬
4.4.2 기본 군집화
4.4.3 상위 수준 군집화
4.5 실험 결과
4.5.1 랜덤 블록 상관관계 행렬 생성
4.5.2 군집의 수
4.6 결론
4.7 연습문제

5장. 금융 레이블

5.1 동기 부여
5.2 고정 - 기간 방법
5.3 삼중 배리어 방법
5.4 추세 검색 방법
5.5 메타 레이블링
5.5.1 기대 샤프 비율에 의한 베팅 크기
5.5.2 앙상블 베팅 크기
5.6 실험 결과
5.7 결론
5.8 연습문제

6장. 특성 중요도 분석

6.1 동기 부여
6.2 p - 값
6.2.1 p 값의 몇 가지 결함
6.2.2 수치 예제
6.3 특성 중요도
6.3.1 평균 감소 불순도
6.3.2 평균 감소 정확도
6.4 확률 가중 정확도
6.5 대체 효과
6.5.1 직교화
6.5.2 군집 특성 중요도
6.6 실험 결과
6.7 결론
6.8 연습문제

7장. 포트폴리오 구축

7.1 동기 부여
7.2 볼록 포트폴리오 최적화
7.3 조건 수
7.4 마코위츠의 저주
7.5 공분산 불안정성의 원천으로서의 신호
7.6 중첩 군집 최적화 알고리즘
7.6.1 상관 군집화
7.6.2 군집 내 비중
7.6.3 군집 간 비중
7.7 실험 결과
7.7.1 최소 분산 포트폴리오
7.7.2 최대 샤프 비율 포트폴리오
7.8 결론
7.9 연습문제

8장. 테스트셋 과적합

8.1 동기 부여
8.2 정밀도와 재현율
8.3 다중 테스트하의 정밀도와 재현율
8.4 샤프 비율
8.5 ‘거짓 전략’ 정리
8.6 실험 결과
8.7 축소 샤프 비율
8.7.1 유효 시행 수
8.7.2 시행 간 분산
8.8 군별 오차율
8.8.1 시다크 조정
8.8.2 다중 테스트하의 1종 오류
8.8.3 다중 테스트하의 2종 오류
8.8.4 1종과 2종 오류 간의 상호작용
8.9 결론
8.10 연습문제

부록 A. 합성 데이터 테스트
부록 B. ‘거짓 전략’ 정리의 증명


펼쳐보기
★ 이 책의 구성 ★

금융 공분산 행렬이 잡음을 갖고, 이들은 회귀 분석을 하거나 최적 포트폴리오를 계산하기 이전에 정제돼야 한다는 것을 배울 것이다(2장). 상관관계가 상호 연관성에 대한 매우 좁은 정의이고, 다양한 정보이론 척도가 더 통찰력이 있다는 것을 배울 것이다(3장). 기저(basis)를 변경하지 않고 공간의 차원을 축소하는 직관적인 방법을 배울 것이다. 주성분 분석(PCA, Principal Component Analysis)과 달리 머신러닝 기반의 차원 축소법은 직관적 결과를 제공한다(4장). 불가능한 고정 기간 예측(fixed-horizon prediction)을 목적으로 하기보다는 높은 정확도로 풀 수 있는 금융 예측 문제를 제안하는 대안적 방법들을 배울 것이다(5장). 고전적 p-값에 대한 현대적 대안을 배우고(6장) 평균-분산 투자 포트폴리오에 만연한 불안정성 문제를 해결하는 법을 배울 것이다(7장). 그리고 연구자의 발견이 다중 테스트의 결과로 거짓일 확률을 평가하는 법을 배울 것이다(8장). 만약 자산 운용 산업 또는 금융 학문에서 일을 한다면 이 책은 바로 당신을 위한 것이다.

★ 옮긴이의 말 ★

이 책은 퀀트 금융의 엘리먼트 시리즈를 통해서 로페즈 데 프라도 박사의 이전의 저서 『실전 금융 머신러닝 완벽 분석(Advances in Financial Machine Learning)』을 보완한 책이며, 개념적으로는 자산운용 일반에도 적용할 수 있다. 특히 퀀트 매니저와 퀀트 분석가들에게 지침이 될 수 있는 책이다. 비록 분량은 짧지만 머신러닝의 금융 응용에 대한 저자의 생각을 제시하고 있으며, 『실전 금융 머신러닝 완벽 분석』의 내용을 이해하기 위한 기초 개념을 더 자세히 설명하고 관련된 최근의 연구를 추가했으므로 『실전 금융 머신러닝 완벽 분석』의 자매서로 적극 권장한다.
이 책을 다 읽은 후에 독자들은 정보 이론을 기반으로 하는 거리 개념, 특히 상호 정보 및 정보 변분의 개념, 최적 군집수(ONC), 계층적 군집화를 이용한 상관계수 행렬의 블록화, 추세를 이용한 레이블링, 평균 감소 불순도(MDI), 평균 감소 정확도, 확률 가중 정확도, 계층적 리스크 패리티를 이용한 포트폴리오 구축 및 훈련셋뿐 아니라 테스트셋에서의 과적합 및 거짓 전략 정리 등의 개념에 익숙해질 것이다. 이들 개념은 머신러닝뿐 아니라 향후 금융 연구 및 금융 전략 개발을 수행하는 데 있어서 중요한 토대가 될 것이다. 덧붙이면, 이 책의 개념을 기반으로 『실전 금융 머신러닝 완벽 분석』을 다시 읽어 보면 많은 부분이 하나로 연결돼 완결로 수렴함을 알 수 있을 것이다.
역자는 로페즈 데 프라도 박사가 한때 몸을 담았던 퀀트 펀드인 AQR과 개인적으로 많은 교류를 했는데, 어떻게 보면 가장 스트리트 스마트한 영리적인 투자회사임에도 항상 학계의 새로운 연구와 인물들을 적극 고용하고 협력하는 것에 많은 감명을 받았다. 이러한 문화와 환경에서 로페즈 데 프라도 박사와 같이 금융 실무와 이론을 겸비한 학자가 탄생하는 것은 매우 자연스러운 일인지도 모른다. 우리나라에서도 산학협동이 적극적으로 이뤄져 이런 성격의 사람들이 많이 배출됐으면 하는 소망으로 말을 마친다.



펼쳐보기
마르코스 로페즈 데 프라도
Marcos M. Lopez de Prado
코넬대학 공과대학교 교수, 트루 포지티브 테크놀로지스(TPT, True Positive Technologies)의 최고정보관리책임자(CIO, Chief Infomation Officer)이다. 머신러닝 알고리즘과 슈퍼 컴퓨터의 도움을 받아 20년 넘게 투자 전략을 개발한 경험이 있다. 2019년에는 「저널 오브 포트폴리오 매니지먼트(The Journal of Portfolio Management)」에서 ‘올해의 퀀트(Quant)상’을 받았다. 자세한 내용은 www.QuantResearch. org을 참고하기 바란다.



펼쳐보기

독자서평 쓰기 로그인을 하시면 독자서평을 쓰실 수 있습니다.

독자서평 쓰기 로그인을 하시면 독자서평을 쓰실 수 있습니다.
도서평점
내용
등록하기
0/2000자
교환/반품 방법
  • 마이페이지 > 주문관리 > 주문/배송조회 > 주문조회 후  [1:1상담신청]  또는 고객센터 (1544-9020)
  • ※ 오픈마켓, 해외배송 주문상품 문의 시 [1:1상담신청] 또는 고객센터 (1544-9020)
교환/반품 가능기간
  • 변심반품의 경우 수령 후 7일 이내
  • 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
교환/반품 비용
  • 단순변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
  • 해외직배송 도서 구매 후 단순변심에 의한 취소 및 반품 시 도서판매가의 20% 수수료 부과
교환/반품 불가사유
  • 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
  • 소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우 예) 만화, 잡지, 수험서 및 문제집류
  • 복제가 가능한 상품 등의 포장을 훼손한 경우 예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집
  • 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우
  • 디지털 컨텐츠인 eBook, 오디오북 등을 1회 이상 다운로드를 받았을 경우
  • 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
  • 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
상품 품절
  • 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는 이메일과 문자로 안내드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
  • 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁 해결 기준 (공정거래위원회 고시)에 준하여 처리됨
  • 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

이 분야의 베스트

더보기 >

    이 분야의 신간

    더보기 >
      맨위로가기

      영풍문고 로고

      • 회사명 : (주)영풍문고
      • 대표이사 : 김경환
      • 소재지 : 서울특별시 종로구 청계천로 41 (우)03188
      • 사업자 등록번호 : 773-86-01800 ㅣ 통신판매업 신고번호 : 2023-서울종로-0130 [ 사업자정보확인 ]
      • 개인정보관리 책임자 : 조순제 ㅣ customer@ypbooks.co.kr ㅣ 대량주문 : webmaster@ypbooks.co.kr
      COPYRIGHT © YOUNGPOONG BOOKSTORE INC. ALL RIGHTS RESERVED.
      영풍문고 네이버블로그 영풍문고 인스타그램
      맨위로가기