영풍문고 - 서점다운 서점


미리보기
딥러닝 인 더 브라우저-자바스크립트 프레임워크를 이용한 딥러닝 웹 개발(아이러브 인공지능 23)
저자 : 자비에르보우리,카이사사키,크리스토프코너,레이이치로나카노 출판사 : 제이펍(주) ㅣ 역자 : 이수진

2020.02.20 ㅣ 244p ㅣ ISBN-13 : 9791188621835

정가 20,000
판매가 18,000(10% 할인)
적립금 1,000원 (5%)
배송일정 오늘 출고 예정 ( 주말, 공휴일 제외 )  
주문 수량 변경시 안내 배송안내
쿠폰 및 결제혜택 확인하기

결제혜택

닫기
이벤트/쿠폰
· 최대 4,000원! 신비한 하얀 소 도서교환권!
결제사 혜택
최대 4,500원 할인
최대 6%적립
무이자혜택
카드사 혜택

크기 기타 규격
제품구성 단행본
이용약관 청약철회
국내도서 > 컴퓨터 > 인터넷 > 웹프로그래밍(웹디자...
딥러닝을 활용한 웹 애플리케이션 개발의 기초와 응용!
웹 프로그래밍과 인공지능의 만남이 시작되는 책!


이 책은 딥러닝과 웹 개발의 교차점에 있습니다. 두 기술 모두 성숙 단계에 접어들었고, 이들이 만난다면 누구도 상상하지 못한 환상적인 애플리케이션을 만들 수 있습니다.

이 책은 기본적인 웹 프로그래밍과 더불어 WebGL 등을 사용한 자바스크립트 딥러닝 프레임워크 사용법을 설명합니다. 브라우저와 딥러닝의 만남은 아직 걸음마 수준에 불과하지만, 하루가 다르게 눈부시게 발전하고 있습니다. 지금이야말로 시작하기 가장 좋을 때입니다. 이 책과 함께 놀라운 딥러닝의 세계를 느껴보기를 바랍니다. 자, 새로운 여행을 떠나 볼까요?
펼쳐보기

[목 차]

CHAPTER 1 딥러닝 소개 1
1.1 신경망을 위한 기초 수학 3
1.1.1 단층 퍼셉트론 3
1.1.2 다층 퍼셉트론 8
1.1.3 합성곱 계층과 풀링층 9
1.1.4 활성화 함수 12
1.2 뉴럴 네트워크 17
1.2.1 손실 함수의 중요성 17
1.2.2 정규화 18
1.2.3 역전파 알고리즘 19
1.2.4 최적화 방법 19
1.3 정리 21

CHAPTER 2 신경망 구조 23
2.1 합성곱 신경망 24
2.1.1 AlexNet 25
2.1.2 GoogLeNet 26
2.1.3 ResNet 27
2.1.4 SqueezeNet 29
2.2 순환 신경망 31
2.2.1 LSTM 33
2.2.2 GRU 34
2.3 강화 학습 35
2.3.1 DQN 38
2.4 정리 39

CHAPTER 3 자바스크립트 딥러닝 프레임워크 41
3.1 TensorFlow.js 42
3.1.1 TensorFlow.js 시작하기 42
3.1.2 XOR 문제 43
3.1.3 XOR 문제 해결 44
3.1.4 네트워크 구조 49
3.1.5 텐서 50
3.1.6 연산 52
3.1.7 학습 55
3.1.8 TensorFlow.js 생태계 58
3.2 WebDNN 61
3.3 Keras.js 63
3.4 정리 65

CHAPTER 4 딥러닝을 위한 자바스크립트 기초 67
4.1 자바스크립트 형식화 배열 68
4.1.1 ArrayBuffer 69
4.1.2 DataView 71
4.2 자바스크립트 동시성 73
4.2.1 자바스크립트 이벤트 루프 73
4.2.2 Promise 비동기 함수 75
4.2.3 async/await 비동기 함수 77
4.2.4 웹워커를 사용한 멀티스레딩 79
4.2.5 딥러닝 애플리케이션을 위한 프로세싱 반복 처리 81
4.3 CPU/GPU에서 리소스 로드하기 81
4.3.1 Fetch API 82
4.3.2 레이블 인코딩 84
4.3.3 원-핫 인코딩 85
4.4 정리 86

CHAPTER 5 WebGL을 이용한 GPU 가속화 89
5.1 WebGL 기초 91
5.1.1 WebGL 작업 흐름 93
5.1.2 프래그먼트 셰이더 렌더링 96
5.2 일반적인 WebGL 사용 102
5.2.1 WebGL 디버깅 103
5.2.2 텍스처 렌더링 104
5.2.3 정밀도 109
5.2.4 최적화 112
5.2.5 부동소수점 스페셜 113
5.2.6 CPU에서 GPU로 또는 GPU에서 CPU로 118
5.3 행렬 연산을 위한 텍스처와 셰이더 119
5.3.1 행렬의 덧셈 120
5.3.2 행렬의 곱셈 120
5.3.3 활성화 함수 122
5.3.4 WGLMatrix 메서드 122
5.4 손글씨 인식 애플리케이션 123
5.4.1 데이터 인코딩 123
5.4.2 메모리 최적화 124
5.4.3 피드포워드 126
5.4.4 첫 번째 시도 126
5.4.5 성능 향상 127
5.5 정리 129

CHAPTER 6 웹브라우저에서의 데이터 추출 131
6.1 이미지 데이터 로딩 132
6.1.1 이미지에서 픽셀 추출하기 132
6.1.2 원격 리소스 로드하기 134
6.1.3 이진 블랍 가져오기 136
6.2 픽셀 데이터를 화면에 렌더링하기 137
6.2.1 이미지 보여주기 138
6.2.2 픽셀 데이터를 캔버스에 렌더링하기 139
6.2.3 이미지 데이터 보간 141
6.2.4 캔버스에 도형 그리기 143
6.3 카메라, 마이크, 스피커 사용하기 144
6.3.1 웹캠에서 이미지 캡처하기 145
6.3.2 마이크로 오디오 레코딩하기 146
6.3.3 사운드 파일의 로딩, 디코딩, 출력 148
6.4 딥러닝 프레임워크의 유틸리티 도구 149
6.4.1 TensorFlow.js 150
6.4.2 Keras.js 151
6.4.3 WebDNN 152
6.5 정리 153

CHAPTER 7 고급 데이터 조작을 위한 레시피 155
7.1 Protobuf 직렬화 156
7.1.1 Caffe 모델 파라미터 파싱하기 158
7.1.2 텐서플로 그래프 파싱 159
7.1.3 부동소수점 정밀도 161
7.2 Chart.js 차트 구현 162
7.2.1 차트 유형 살펴보기 163
7.2.2 데이터 세트 구성 165
7.2.3 데이터 업데이트 166
7.2.4 옵션과 구성 설정 168
7.3 캔버스를 활용한 스케치 171
7.3.1 캔버스에 그림 그리기 172
7.3.2 펜 스트로크 추출하기 175
7.4 마이크에서 스펙토그램 계산하기 177
7.5 얼굴 감지 및 추적 179
7.5.1 Jeeliz FaceFilter를 사용한 얼굴 추적 179
7.5.2 Tracking.js로 얼굴 추적하기 180
7.5.3 크롬 얼굴 인식 API 182
7.6 정리 184

CHAPTER 8 TensorFlow.js 애플리케이션 개발 185
8.1 TensorFlow.js를 활용한 동작 분류 185
8.1.1 알고리즘 186
8.1.2 TensorFlow.js 프로젝트 시작하기 188
8.1.3 KNN 분류기 설정 189
8.1.4 TensorFlow.js 프로세싱 루프 190
8.1.5 정리 193
8.2 TensorFlow.js를 활용한 텍스트 생성 애플리케이션 개발 193
8.2.1 알고리즘 193
8.2.2 케라스 모델 194
8.2.3 케라스 모델을 TensorFlow.js 모델로 변환하기 195
8.2.4 프로젝트 설치하기 196
8.2.5 TensorFlow.js로 케라스 모델 가져오기 196
8.2.6 TensorFlow.js 프로세싱 반복문 197
8.2.7 모델 입력 구성하기 198
8.2.8 예측 구현 200
8.2.9 모델 출력 샘플링 201
8.2.10 마치며 203
8.3 TensorFlow.js를 활용한 이미지 노이즈 제거 204
8.3.1 알고리즘 204
8.3.2 케라스 모델을 TensorFlow.js 모델로 변환하기 206
8.3.3 프로젝트 설치 207
8.3.4 초기화 207
8.3.5 애플리케이션 동작 흐름 208
8.3.6 테스트 이미지 불러오기 209
8.3.7 노이즈 업데이트 211
8.3.8 이미지 노이즈가 제거된 이미지 생성하기 211
8.3.9 이미지 노이즈 제거 212
8.3.10 초기화 함수 213
8.3.11 마치며 214
8.4 정리 214
8.5 맺음말 216

찾아보기 218

[본 문]

저처럼 이제 막 딥러닝의 세계로 뛰어든 웹 개발자라면, 이론과 실제라는 엄청난 간극을 메울 수 있는 최고의 책이 될 것입니다. 이 책을 통해 수학적인 이론에 그치지 않고 다양한 딥러닝 모델을 사용한 데모를 실제로 개발해 보며 딥러닝의 세계를 직접 맛볼 수 있을 것입니다. 특히, 저자들의 실제 딥러닝 애플리케이션 개발 경험을 통해 얻었던 팁에서 이 책의 정수를 느낄 수 있을 것입니다.
_X페이지(옮긴이 머리말 중에서)

퍼셉트론 방정식에서 계단 함수(step function)가 소개된 이후, 시그모이드 함수(sigmoid function)는 1980년대 가장 인기 있는 활성화 함수였습니다. 그 이유는 계단 함수와 달리 시그모이드는 함수가 모든 값을 0과 1의 범위로 부드럽게 변경하고 연속적인 값을 얻을 수 있기 때문입니다.
_12페이지

현재 TensorFlow.js는 0차원(0D 텐서) 배열(스칼라)부터 4차원(4D 텐서) 배열까지 지원합니다. 학습 데이터, 테스트 데이터, 네트워크 가중치 등과 같이 신경망에서 처리하는 모든 데이터는 반드시 텐서로 표시해야 합니다. TensorFlow.js는 사용자로부터 텐서를 통해 WebGL 셰이더(shaders) 사용을 숨깁니다. 내부적으로 TensorFlow.js는 CPU(자바스크립트 스레드)에서 GPU(WebGL 셰이더)로, (결과를 검색하기 위해) 텐서 데이터를 앞뒤로 전송합니다.
_50페이지

고정밀 셰이더에서는 부동소수점 숫자가 GPU에 따라 16~32bit를 사용하여 저장됩니다. 첫 번째 비트에 부호가 결정되면 부동소수점으로 넘어갑니다. 32bit 부동소수점의 경우, 8bit가 지수를 인코딩하고 23bit가 소수를 인코딩합니다. 저장 형식은 32bit 인코딩된 부동소수점 값의 최댓값은3.4e38이고 최솟값은-3.4e38입니다. 16bit 부동소수점은 이보다 범위가 더 좁을 것입니다.
_113페이지

protobuf.js는 모듈로서 ES6 및 Type-script 클래스를 내보낼 수도 있습니다. 모듈에서 코드를 구성하면 환상적입니다. 그러나 브라우저에서 이러한 모듈을 사용하려면 Browserify 또는 Type-script와 같은 패키징 시스템을 사용하여 브라우저용으로 컴파일하고 패키지화해야 합니다. 가독성과 재현성을 위해 이 섹션에서는 JSON 형식을 사용합니다.
_157페이지
펼쳐보기
딥러닝을 활용한 웹 애플리케이션 개발의 기초와 응용!
웹 프로그래밍과 인공지능의 만남이 시작되는 책!


이 책은 딥러닝과 웹 개발의 교차점에 있습니다. 두 기술 모두 성숙 단계에 접어들었고, 이들이 만난다면 누구도 상상하지 못한 환상적인 애플리케이션을 만들 수 있습니다.

이 책은 기본적인 웹 프로그래밍과 더불어 WebGL 등을 사용한 자바스크립트 딥러닝 프레임워크 사용법을 설명합니다. 브라우저와 딥러닝의 만남은 아직 걸음마 수준에 불과하지만, 하루가 다르게 눈부시게 발전하고 있습니다. 지금이야말로 시작하기 가장 좋을 때입니다. 이 책과 함께 놀라운 딥러닝의 세계를 느껴보기를 바랍니다. 자, 새로운 여행을 떠나 볼까요?

이 책의 주요 내용
∙ 주요 딥러닝 모델
∙ 딥러닝을 위한 기초 수학
∙ 딥러닝 모델을 활용한 웹 애플리케이션 제작법
∙ TensorFlow, WebDNN, Keras 등 최신 딥러닝 프레임워크 사용법
∙ WebGL 사용법
펼쳐보기
자비에르 보우리(Xavier Bourry)
StartupJeeliz의 대표 겸 CTO이자 딥러닝 전문가다.
@xavierbourry

카이사사키(Kai Sasaki)
ARM의 시니어 소프트웨어 개발자이며, Apache Hivemall의 오픈 소스 커미터로 활
동하고 있다.
@Lewuathe

크리스토프코너(Christoph Körner)
마이크로소프트 아일랜드에서 TSP 데이터 및 인공지능 처리 업무를 담당하고 있다.
@ChrisiKrnr

레이이치로나카노(Reiichiro Nakano)
Infostellar의 소프트웨어 개발자이자 머신러닝 전문가다.
@reiinakano


옮긴이 이수진
대학에서 작곡을 공부하던 중 기술과 예술의 만남을 목격하고 웹 기술에 매료되어 드넓은 IT 세상에 뛰어들었다. 예술가가 펼치는 아름다운 색과 선율처럼 코드로 독창적이고 생동감 넘치는 웹을 만들고 싶은 소프트웨어 엔지니어다. 싱가포르 국영 언론사에서 다수의 데이터 분석 및 시각화 프로젝트를 진행했다. 현재는 베를린의 핀테크 스타트업에서 리액트 개발을 하고 있으며, 딥러닝 모델을 활용한 인터랙티브 웹 개발에 많은 관심을 기울이고 있다.
홈페이지: https://sujinlee.me
트위터: @sujinleeme
펼쳐보기

독자서평 쓰기 로그인을 하시면 독자서평을 쓰실 수 있습니다.

독자서평 쓰기 로그인을 하시면 독자서평을 쓰실 수 있습니다.
도서평점
내용
등록하기
0/2000자

맨위로가기


영풍문고 로고

  • 회사명 : (주)영풍문고
  • 대표이사 : 최영일
  • 소재지 : 서울특별시 강남구 강남대로 542번지 (우)06110
  • 사업자 등록번호 : 773-86-01800 ㅣ 통신판매업 신고번호 : 2020-서울강남-01007 [ 사업자정보확인 ]
  • 개인정보관리 책임자 : 조순제 ㅣ E-mail : customer@ypbooks.co.kr ㅣ 대량주문 : 02-519-2860
COPYRIGHT © YOUNGPOONG BOOKSTORE INC. ALL RIGHTS RESERVED.
맨위로가기